The mechanism of DNA cytosine-5 methylation. Kinetic and mutational dissection of Hhai methyltransferase.
نویسندگان
چکیده
Kinetic and binding studies involving a model DNA cytosine-5-methyltransferase, M.HhaI, and a 37-mer DNA duplex containing a single hemimethylated target site were applied to characterize intermediates on the reaction pathway. Stopped-flow fluorescence studies reveal that cofactor S-adenosyl-l-methionine (AdoMet) and product S-adenosyl-l-homocysteine (AdoHcy) form similar rapidly reversible binary complexes with the enzyme in solution. The M.HhaI.AdoMet complex (k(off) = 22 s(-)1, K(D) = 6 microm) is partially converted into products during isotope-partitioning experiments, suggesting that it is catalytically competent. Chemical formation of the product M.HhaI.(Me)DNA.AdoHcy (k(chem) = 0.26 s(-)1) is followed by a slower decay step (k(off) = 0.045 s(-)1), which is the rate-limiting step in the catalytic cycle (k(cat) = 0.04 s(-)1). Analysis of reaction products shows that the hemimethylated substrate undergoes complete (>95%) conversion into fully methylated product during the initial burst phase, indicating that M.HhaI exerts high binding selectivity toward the target strand. The T250N, T250D, and T250H mutations, which introduce moderate perturbation in the catalytic site, lead to substantially increased K(D)(DNA(ternary)), k(off)(DNA(ternary)), K(M)(AdoMet(ternary)) values but small changes in K(D)(DNA(binary)), K(D)(AdoMet(binary)), k(chem), and k(cat). When the target cytosine is replaced with 5-fluorocytosine, the chemistry step leading to an irreversible covalent M.HhaI.DNA complex is inhibited 400-fold (k(chem)(5FC) = 0.7 x 10(-)3 s(-)1), and the Thr-250 mutations confer further dramatic decrease of the rate of the covalent methylation k(chem). We suggest that activation of the pyrimidine ring via covalent addition at C-6 is a major contributor to the rate of the chemistry step (k(chem)) in the case of cytosine but not 5-fluorocytosine. In contrast to previous reports, our results imply a random substrate binding order mechanism for M.HhaI.
منابع مشابه
Cytosine methylation enhances Z-DNA formation in vivo.
The influence of cytosine methylation on the supercoil-stabilized B-Z equilibrium in Escherichia coli was analyzed by two independent assays. Both the M.EcoRI inhibition assay and the linking-number assay have been used previously to establish that dC-dG segments of sufficient lengths can exist as left-handed helices in vivo. A series of dC-dG plasmid inserts with Z-form potential, ranging in l...
متن کاملDNA containing 4'-thio-2'-deoxycytidine inhibits methylation by HhaI methyltransferase.
4'-Thio-2'-deoxycytidine was synthesized as a 5'- protected phosphoramidite compatible with solid phase DNA synthesis. When incorporated as the target cytosine (C*) in the GC*GC recognition sequence for the DNA methyltransferase M. HhaI, methyl transfer was strongly inhibited. In contrast, these same oligonucleotides were normal substrates for the cognate restriction endonuclease R. HhaI and it...
متن کاملProbing a rate-limiting step by mutational perturbation of AdoMet binding in the HhaI methyltransferase
DNA methylation plays important roles via regulation of numerous cellular mechanisms in diverse organisms, including humans. The paradigm bacterial methyltransferase (MTase) HhaI (M.HhaI) catalyzes the transfer of a methyl group from the cofactor S-adenosyl-L-methionine (AdoMet) onto the target cytosine in DNA, yielding 5-methylcytosine and S-adenosyl-L-homocysteine (AdoHcy). The turnover rate ...
متن کاملMethylation of either cytosine in the recognition sequence CGCG inhibits ThaI cleavage of DNA.
ThaI (CGCG) sites which overlap HhaI (GCGC) sites in phi X174 and pBR322 DNA were methylated in vitro with HhaI methylase and S-adenosylmethionine to yield CGmCG, mCGCG or mCGmCG (5-methylcytosine, mC). Methylation of either cytosine in the ThaI recognition sequence rendered the DNA resistant to ThaI cleavage. Rat pituitary cell genomic DNA was digested with ThaI or 2 other known methylation-se...
متن کاملIn vivo site-specific DNA methylation with a designed sequence-enabled DNA methylase.
As an alternative to the continual expression of transcriptional repressors to turn off genes after they have served their purpose, nature has developed epigenetic strategies that result in the covalent modification of DNA itself to induce heritable gene silencing. Mounting evidence supports the notion that once a genomic region has been targeted for silencing by acquisition of one or more cova...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 276 24 شماره
صفحات -
تاریخ انتشار 2001